
Discussion Topic:

Which UML models might you use to present your chosen security vulnerability and why are

they the most appropriate choice(s)?

My Initial Post

'Injection' attacks made it onto OWASP's most recent Top10 software vulnerabilities,
which were decided by considering how exploitable the vulnerabilities are and how
impactful those exploits could be[1]. Being somewhat familiar with SQL, I wanted to
discuss SQL injections specifically.

Description of SQL Injections

OWASP links each vulnerability to Mitres' Common Weakness Enumeration entry of
it, a database which gives the following description of an SQL attack:"[The use of]
user-controllable inputs, [so] the generated SQL query can cause those inputs to be
interpreted as SQL instead of ordinary user data"[2].

To understand the potential impact of SQL injections, it's standard to relate them to
the CIA triad of ideal information assurances [3].

1. Confidentiality ~ SQL injections can facilitate the exposure of sensitive data.

2. Integrity ~ SQL injections can facilitate the alteration of data.

3. Availability - SQL injections can facilitate the destruction of data.

The following flow chart aims to show how malicious SQL injections are performed:

OWASP provides a theoretical example of an SQL injection[4], for the curious. Do
you know of any ways to prevent SQL injections?

Model-based Security

Being accustomed to UML, it would be really convenient to be able to model security
vulnerabilities using it. By modelling security vulnerabilities, we are more likely to
remember to implement security protection in our software when implementing those
models.

One way security proactivity is achievable, is by using UML extension entities such
as stereotypes and tags. There are multiple variations of how these might be
formatted, such as using the Object Constraint Language (OCL)[5], or not [6]. As
OCL looks intimidating, I think it's less likely to be adopted by new developers, who
are most likely to be unaware of security vulnerabilities, so I definitely favour the
friendlier version.

The following activity diagram aims to be an example of a visually informative use of
stereotypes and tags to indicate a security vulnerability. The stereotype and tag
construction I've used is one that's been recommended [7]. Specifically, in the
diagram, the stereotype is '<<SqlInjection>>' and the tags are the things written
below it. The dotted lines indicate the activity that's being tagged as having a security
vulnerability.

Out of all possible UML diagrams, I think activity diagrams are the most generally
useful diagrams for marking security vulnerabilities. Some of the reasons for
that include:

• The granularity of detail can be finetuned to suit either developers or other
stakeholders.

• Activity diagrams are behaviour diagrams, so vulnerabilities can be situated
within the flow of the software. As a developer, I would find that extra
helpful.

There's definitely arguments to be made for other diagrams such as class and
package diagrams, which catalogue some of the components for developers to make
use of, but at this point in time, I would somewhat validate those diagrams by
referring to an activity diagram. Do you find activity diagrams useful?

Software Development Lifecycles

Lastly, I wanted to bring up the task of integrating model-based security into a
software development lifecycle. In a secure scrum framework, would it be beneficial
to link s-tags[8] to specific activities on an activity diagram associated with security
vulnerabilities, for tracking security developments?

References

[1] OWASP. (2021) OWASP TOP10. Available from: https://owasp.org/Top10/
[Accessed 4 May 2023].

[2] MITRE. (2023) CWE-89: Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection'). Available
from: https://cwe.mitre.org/data/definitions/89.html [Accessed 4 May 2023].

[3] CIS. (2023) Election Security Spotlight - CIA Triad. Available
from: https://www.cisecurity.org/insights/spotlight/ei-isac-cybersecurity-spotlight-cia-
triad [Accessed 4 May 2023].

[4] OWASP. (2023) Testing for SQL Injection. Available
from: https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/07-Input_Validation_Testing/05-
Testing_for_SQL_Injection [Accessed 4 May 2023]

[5] Salas, P., Krishnan, P. & Ross, K. (2007) 'Model-Based Security Vulnerability
Testing', 2007 Australian Software Engineering Conference (ASWEC'07).
Melbourne, Australia, 2007. New York: IEEE. 284-296. Available
from: https://doi.org/10.1109/ASWEC.2007.31 [Accessed 4 May 2023]

[6] Jürjen, J. (2002) 'UMLsec: Extending UML for Secure Systems Development',
in: Jézéquel, J., Hussmann, H. & Cook, S. (eds) <<UML>> 2002 - The Unified
Modeling Language. UML 2002. Lecture Notes in Computer Science, vol 2460.
Berlin: Springer. 412-425. Available from: https://doi.org/10.1007/3-540-45800-X_32
[Accessed 4 May 2023]

[7] Peralta, K., Orozco, A., Zorzo, A., & Oliveira, F. (2008) 'Specifying Security
Aspects in UML Models', Proceedings of the Workshop on Modelling Security
(MODSEC08) held as part of the 2008 International Conference on Model Driven
Engineering Languages and Systems (MODELS). Toulouse, France, 2008.
Germany: CEUR-WS. Available from: https://ceur-ws.org/Vol-413/ [Accessed 4 May
2023]

[8] Pohl, C. & Hof, H. (2015) 'Secure Scrum: Development of Secure Software with
Scrum', The Ninth International Conference on Emerging Security Information,
Systems and Technologies - SECURWARE 2015. Venice, Italy, 2015. Available
from: https://doi.org/10.48550/arXiv.1507.02992 [Accessed 4 May 2023]

Bibliography

OMG. (2014) About the Object Constraint Language. Specification Version 2.4.
Available from: https://www.omg.org/spec/OCLF [Accessed 4 May 2023]

OMG. (2017) About the Unified Modelling Language. Specification Version 2.5.1.
Available from: https://www.omg.org/spec/UML/2.5.1/About-UML#document-
metadata [Accessed 4 May 2023]

My Initial Post / Tutor Response

Thank you, Brad.

Please use the Harvard approach to referencing, not the numbered approach. The

Computing Department at Essex uses the Harvard scheme.

Good use of an activity diagram here, Brad. It could perhaps be extended to include an

Attacker as a swimlane to show the practical steps taken when a breach is happening.

I note entries in the Reference list which are not cited inline e.g., Peralta et al. (2008). If this

source has informed your reading but has not been used to support your writing, please

move it in the Bibliography instead.

Best wishes,

Cathryn

My Initial Post / Tutor Response / My Response

Thanks for taking the time to read and critique this.

After reading your response I've realised that the 7th link goes to a collection of
papers and not the paper itself. The correct link is this one: https://ceur-ws.org/Vol-
413/paper11.pdf. Information was taken from that paper directly, as specified by the
sentence: "The stereotype and tag construction I've used is one that's been
recommended [7]". That paper specifies a stereotype and tag construction that I've
made use of in the activity diagram. If I'd have used Harvard's approach for inline
citations, I hope that would have been clearer, and I've regretfully missed an
opportunity to practise that.

Regarding the suggestion to incorporate more details about breaches into the activity
diagram; I would like to build upon that with the note that designing security
solutions is more useful for transitioning into implementation, than just
annotating the security vulnerabilities of a design. Annotations of the kind I
demonstrated, are only useful in a multi-stage design phase, where solutions are
made afterwards. Therefore, drawing from 'CAPEC-66: SQL Injection' entry of
MITRE's Common Attack Pattern Enumeration and Classification (CAPEC) list of
mitigations for SQL injections; I would like to share a revision of the activity diagram:

I couldn't guarantee that an outside stakeholder would be able to tell which activities
constitute mitigations against SQL attacks, so I think that's a potential weakness of
this diagram. As I designed this diagram, I know that the mitigations are the following
activities: 'filter out apostrophes and dashes', 'filter out SQL keywords' and 'send
custom Response', but I wonder what the most effective technique for clearly
marking those activities as security mitigations is? Possible techniques I guess
would be: the use of more specialised swim lanes, the addition of events into the
diagram, or perhaps more varieties of stereotype. I'm curious about opinions on that.

References

Mitre. (2021) CAPEC-66 : SQL Injection. Available
from: https://capec.mitre.org/data/definitions/66.html [Accessed 11 May 2023].

Peer A Initial Post

A06:2021-Vulnerable and Outdated Components

Vulnerable and Outdated Components has moved up from ninth to sixth in the
OWASP Top 10 Web Application Security Risks. Having worked for many years in
education and now in a Government Department I have witnessed these
organisations sweating out the use of hardware and software in order to keep costs
down. This can lead to components becoming vulnerable to attacks or being out of
date.

Java-script libraries are used by web developers in order to make sites more
functional, however this can be open to attacks if not kept up-to-date and result in

the site being potentially exposed (Lauinger et al, 2018). According to Tang et al
(2015), you are able to predict these vulnerabilities through text mining or software
metrics, with software metrics seen as the most cost-effective.

Another area where this is an issues is through SQL injection attacks, this can allow
sensitive data to be updated or read as well as running commands and accessing
files from the servers (Guimarães, 2009). An example of this can be seen in Figure
1.

The Internet of Things (IoT) is seen as a revolution, however this can be susceptible
to attacks due to insecure software configuration (Jiang, Lora, and Chattopadhyay,
2020). Old/unpatched dependencies in the dependency chain of the components
being used. There is also an issue with IOT that older dependencies or those that
are unpatched can be exploited by cybercriminals. This is particularly an issue when
industries use this technology to gain efficiencies, for instance the Amazon Ring was
subject to an attack, whereby the hackers could get live streams from the systems
through weak, recycled and default identifications (Smith, 2020).

References:

B. D. A. Guimarães, Advanced SQL injection to operating system full control, Black
Hat Europe, white paper, 2009.

Jiang, X., Lora, M. and Chattopadhyay, S., 2020. An experimental analysis of
security vulnerabilities in industrial IoT devices. ACM Transactions on Internet
Technology (TOIT), 20(2), pp.1-24.

Lauinger, T., Chaabane, A., Arshad, S., Robertson, W., Wilson, C. and Kirda, E.,
2018. Thou shalt not depend on me: Analysing the use of outdated javascript
libraries on the web. arXiv preprint arXiv:1811.00918.

Omolara, A.E., Alabdulatif, A., Abiodun, O.I., Alawida, M., Alabdulatif, A. and Arshad,
H., 2022. The internet of things security: A survey encompassing unexplored areas
and new insights. Computers & Security, 112, p.102494.

Sengupta, J., Ruj, S. and Bit, S.D., 2020. A comprehensive survey on attacks,
security issues and blockchain solutions for IoT and IIoT. Journal of Network and
Computer Applications, 149, p.102481.

Smith, S.W., 2020. Securing the Internet of Things: An Ongoing Challenge.
Computer, 53(6), pp.62-66.

Tang, Y., Zhao, F., Yang, Y., Lu, H., Zhou, Y. and Xu, B., 2015, August. Predicting
vulnerable components via text mining or software metrics? An effort-aware
perspective. In 2015 IEEE International Conference on Software Quality, Reliability
and Security (pp. 27-36). IEEE.

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Peer A Initial Post / My Response

Hi,
Thanks the interesting read. I like the fact that you chose to talk about 'vulnerable
and outdated components', because it's a good example of a security vulnerability
that UML doesn't have a prescribed view to model it's solution. UML has a package
view to show dependencies between packages, but Rumbaugh et al (2005), the
pioneers of UML, state that versioning is outside the scope of it.

Does package management software, such as pip for python, makes it more or less
likely that software designers take an active role in package management? Package
management software can give warnings when vulnerabilities are detected,
but studies such as Athalye et al's (2014) have shown that package management
software can itself be an attack vector, in man the middle attacks for example. I'm
curious if you have any input on the mitigation of the security vulnerability associated
with outdated components?

References

Athalye, A, Hristov, R., Nguyen, T. & Nguyen, Q. (2014) Package Manager Security.
Available
from: https://pdfs.semanticscholar.org/d398/d240e916079e418b77ebb4b3730d7e95
9b15.pdf
[Accessed 11 May 2023].

Rumbaugh, J., Jacobson, I. & Booch, G. (2005) The Unified Modeling Language
Reference Manual. 2nd ed. Boston, USA: Pearson Education, Inc.

Peer B Initial Post

The focus of my initial post is the "Broken Access Control" vulnerability, which
appears to be a more common issue than one may think. According to OWASP, 38

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

out of 100 websites suffer from this vulnerability (OWASP, 2021). Ranking fifth only a
few years back, "Broken Access Control" has moved up to be the number one
vulnerability in the most recent edition of the OWASP top ten.

Per definition, "Broken Access Control" refers to a faulty access control system
which allows an attacker to access data outside of their intended permission. In its
worst form, it may allow an attacker to modify and delete data or take control over an
entire system (OWASP, 2021). This may consequently lead to financial losses, user
data being compromised, and damage to the reputation of the affected company
(Hassan et.al., 2018).

As described in the flowchart above, one of the ways for this vulnerability to occur is
that the website includes a user's profile ID in the URL. It would be relatively safe to
assume that changing this ID by one integer up and down would result in the profile
ID of another user. If the website does not check for privileges or does not re-
authenticate a user when one of its pages is accessed directly via a link, then this
may result in unauthorized access to another person's profile.

Therefore, a user should be authenticated each time they try to access another
page. If the user attempts to retrieve information they don't have the privileges for,
then access should not be granted (see flowchart below).

This concept is best represented with a UML Sequence Diagram, as it shows the
transmission and exchange of messages between the server(s) and the client to
authenticate a user and only grant access to those resources the user has privileges

to.

In this example, I have decided not to represent the "actor" (i.e. the user), as all of
the valuable interaction takes place between objects. When the user attempts to log
in to their account, the client, which in this case is a web browser, sends a login
request to the authentication service. The authentication service verifies the user's
credentials and returns an access token, which is stored on both the server and the
client.

When the user requests to access data on the server, the server will attempt to verify
the access token by communicating directly with the authentication service. If the
authentication service deems the access token to be valid, the server will grant
access to the requested data. If the access token is invalid or the user fails to
produce valid login credentials altogether, then the authentication service and server
will both reject the client's attempts to access data. As the server will always
communicate with the authentication service whenever a new page or new data is
accessed, an attacker will be unable to simply change URLs or access pages
directly via a link to gain unauthorized access.

References

OWASP (2021) A01:2021 - Broken Access Control. Available
from: https://owasp.org/Top10/A01_2021-Broken_Access_Control/ [Accessed 6
March 2023].

Hassan, M. M., Ali, M. A., Bhuiyan, T., Sharif, M. H. & Biswas, S. (2018) 'Quantitative
Assessment on Broken Access Control Vulnerability in Web
Applications', International Conference on Cyber Security and Computer Science

https://owasp.org/Top10/A01_2021-Broken_Access_Control/

(ICONCS'18) Safranbolu, Turkey, 18-20 October. Available
from: https://www.researchgate.net/profile/Saikat-Biswas-10 [Accessed 6 May 2023].

Peer B Initial Post / My Response

Hi,

I really like the way you've separated the topic into two flow diagrams, the first to introduce

the security vulnerability, and the second to introduce the security mitigation. It's an excellent

use visual scaffolding to clarify the topic, and to me, it demonstrates criticality, through the

identification, and then development of key information.

I also really liked your sequence diagram, especially the inclusion of objects that exist in a

service-oriented architecture, because software development often exists within the context

of a business, so I think it's a generally appropriate architecture to use. I'm not experienced

in service-oriented architecture, so I appreciate seeing it in your example. Do you by any

chance know of any good libraries in Python for building an authentication service?

Peer B Initial Post / My Response / Peer B Response

Hi Brad,

Thanks for your comment! The only Python library I have used to experiment with user and

password authentication is called 'bcrypt'. The 'bcrypt' library allows you to hash passwords

to store them securely. You can then use these hashed passwords to authenticate login

attempts. The 'bcrypt' library also uses something called 'salt', a random value that is added

to the user's password when it is hashed. This guarantees that the hash is unique, even if

two users use the same password.

Other than that, I have looked at libraries such as "Authlib", which allows you to implement

authentication protocols, but I have not had the chance to use it yet.

